Abstract
Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal-organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (∼1015 sites/cm2). The chemical products of the reduction, obtained with ∼100% Faradaic efficiency, are mixtures of CO and H2. These results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.
Original language | English |
---|---|
Pages (from-to) | 6302-6309 |
Number of pages | 8 |
Journal | ACS Catalysis |
Volume | 5 |
Issue number | 11 |
DOIs | |
State | Published - 6 Nov 2015 |
Externally published | Yes |
Keywords
- CO reduction
- Fe-porphyrin
- electrocatalysis
- metal organic frameworks
- redox conductivity
- solar fuel
ASJC Scopus subject areas
- Catalysis
- General Chemistry