Abstract
Marine oil spills have become a major global environmental challenge, yet there remains a lack of effective and environmentally friendly strategies for the remediation of water contaminated with high-viscosity oil. In this study, we introduce a superhydrophobic oleophilic material with photothermal properties for efficient absorption of viscous oil. Femtosecond laser treatment methodology is applied to cork (FSLA-cork), which exhibits not only superior hydrophobic and oleophilic properties but also the exceptional ability to be rapidly heated from ambient conditions to 58 °C in 10 s under 1.8 solar irradiation. Under solar irradiance, the FSLA-cork adsorbent functions synergistically by capillary absorption and centrifugal pumping. At one-sun intensity, an oil absorption rate of 4.02 g cm−2 within 200 s was observed. The high adsorption rates of FSLA-cork combined with the high availability of the raw material and its eco-friendly fabrication methods indicate that such methods and materials can be utilized for large-scale clean up of aqueous environments contaminated with high-viscosity oils.
Original language | English |
---|---|
Article number | 171601 |
Journal | Applied Physics Letters |
Volume | 124 |
Issue number | 17 |
DOIs | |
State | Published - 22 Apr 2024 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)