TY - JOUR
T1 - Field Scale Mobility and Transport Manipulation of Carbon-Supported Nanoscale Zerovalent Iron in Fractured Media
AU - Cohen, Meirav
AU - Weisbrod, Noam
N1 - Publisher Copyright:
Copyright © 2018 American Chemical Society.
PY - 2018/7/17
Y1 - 2018/7/17
N2 - In field applications, mostly in porous media, transport of stabilized nano zerovalent iron particles (nZVI) has never exceeded a few meters in range. In the present study, the transport of Carbo-Iron Colloids (CIC), a composite material of activated carbon as a carrier for nZVI stabilized by carboxymethyl cellulose (CMC), was tested under field conditions. The field site lies within a fractured chalk aquitard characterized by moderately saline (∼13 mS) groundwater. A forced gradient tracer test was conducted where one borehole was pumped at a rate of 8 L/min and CMC-stabilized CIC was introduced at an injection borehole 47 m up-gradient. Two CIC-CMC field applications were conducted: one used high 100% wt CMC (40 g/L) and a second used lower 9% wt loading (∼2.7 g/L). Iodide was injected as a conservative tracer with the CIC-CMC in both cases. The ratio between the CIC-CMC and iodide recovery was 76% and 45% in the high and low CMC loading experiments, respectively. During the low CMC loading experiment, the pumping rate was increased, leading to an additional CIC recovery of 2.5%. The results demonstrate the potentially high mobility of nZVI in fractured environments and the possibility for transport manipulation through the adjustment of stabilizer concentration and transport velocity.
AB - In field applications, mostly in porous media, transport of stabilized nano zerovalent iron particles (nZVI) has never exceeded a few meters in range. In the present study, the transport of Carbo-Iron Colloids (CIC), a composite material of activated carbon as a carrier for nZVI stabilized by carboxymethyl cellulose (CMC), was tested under field conditions. The field site lies within a fractured chalk aquitard characterized by moderately saline (∼13 mS) groundwater. A forced gradient tracer test was conducted where one borehole was pumped at a rate of 8 L/min and CMC-stabilized CIC was introduced at an injection borehole 47 m up-gradient. Two CIC-CMC field applications were conducted: one used high 100% wt CMC (40 g/L) and a second used lower 9% wt loading (∼2.7 g/L). Iodide was injected as a conservative tracer with the CIC-CMC in both cases. The ratio between the CIC-CMC and iodide recovery was 76% and 45% in the high and low CMC loading experiments, respectively. During the low CMC loading experiment, the pumping rate was increased, leading to an additional CIC recovery of 2.5%. The results demonstrate the potentially high mobility of nZVI in fractured environments and the possibility for transport manipulation through the adjustment of stabilizer concentration and transport velocity.
UR - http://www.scopus.com/inward/record.url?scp=85048697493&partnerID=8YFLogxK
U2 - 10.1021/acs.est.8b01226
DO - 10.1021/acs.est.8b01226
M3 - Article
AN - SCOPUS:85048697493
SN - 0013-936X
VL - 52
SP - 7849
EP - 7858
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 14
ER -