Abstract
Road traffic assignment, or forecasting route and link flows corresponding to fixed matrices of origin-destination (OD) flows by vehicle class on a road network for a given time period, is commonly applied by transportation planning practitioners. The standard user-equilibrium traffic assignment method uniquely determines the total flow on each network link, subject to convergence errors. Multiple-class link flows and route flows, however, are indeterminate. To ensure that route and multiple-class link flows are uniquely determined, or consistent, an additional assumption is required. One option is that proportions of flow over alternative route segments with equal costs are the same for all drivers, regardless of origin or destination. Analyses based on the assigned link and route flows by vehicle class, such as select link, select zone and emissions analyses, are often performed without considering this issue. Although such analyses have become important in practice, no commercial software system currently considers the indeterminacy of these flows.
Traffic Assignment by Paired Alternative Segments (TAPAS) is a new algorithm offering the first practical way to address this issue. In this project six practitioners analyzed how route flows and/or multiple-class link flows generated by TAPAS compared with those found by the commercial software systems. A specialized tool VPAS was developed to compare the outputs of TAPAS and the practitioner software. The project team also undertook its own case study of the Chicago region with tools offered by four commercial software systems, which may be classified into two groups: link-based and quick-precision. Link-based tools applied in the project were CUBE, EMME, and TransCAD; quick precision tools applied were VISUM’s route-based method and TransCAD’s origin user-equilibrium (OUE) method. Findings of these applications may be summarized as follows:
1. Select link results for link-based tools were approximately similar to those found by TAPAS; differences in flows through a selected link by OD pair were relatively small. However, small flows were observed in link-based solutions on non-equilibrium routes not found in the more precise TAPAS solutions. As a result, the number of OD pairs using a select link was often much larger for link-based tools than for TAPAS. Analyses of flows on pairs of equal-cost segments showed that link-based solutions tended to satisfy approximately the proportionality condition. Slow convergence, however, is a costly limitation of link-based tools. Even so, the findings suggest that link-based tools do provide approximately proportional solutions, which was not realized before this project.
2. Select link results for quick-precision tools were very different from those produced by TAPAS. In particular, where TAPAS predicted positive flows, quick-precision tools often gave zero flow from an OD pair through a selected link. Analyses of flows on pairs of equal-cost segments showed that quick-precision tools produced solutions that violate the proportionality condition. In two-class assignments for pairs of alternative segments, the proportions of flow found by quick-precision solutions were also different by class.
Traffic Assignment by Paired Alternative Segments (TAPAS) is a new algorithm offering the first practical way to address this issue. In this project six practitioners analyzed how route flows and/or multiple-class link flows generated by TAPAS compared with those found by the commercial software systems. A specialized tool VPAS was developed to compare the outputs of TAPAS and the practitioner software. The project team also undertook its own case study of the Chicago region with tools offered by four commercial software systems, which may be classified into two groups: link-based and quick-precision. Link-based tools applied in the project were CUBE, EMME, and TransCAD; quick precision tools applied were VISUM’s route-based method and TransCAD’s origin user-equilibrium (OUE) method. Findings of these applications may be summarized as follows:
1. Select link results for link-based tools were approximately similar to those found by TAPAS; differences in flows through a selected link by OD pair were relatively small. However, small flows were observed in link-based solutions on non-equilibrium routes not found in the more precise TAPAS solutions. As a result, the number of OD pairs using a select link was often much larger for link-based tools than for TAPAS. Analyses of flows on pairs of equal-cost segments showed that link-based solutions tended to satisfy approximately the proportionality condition. Slow convergence, however, is a costly limitation of link-based tools. Even so, the findings suggest that link-based tools do provide approximately proportional solutions, which was not realized before this project.
2. Select link results for quick-precision tools were very different from those produced by TAPAS. In particular, where TAPAS predicted positive flows, quick-precision tools often gave zero flow from an OD pair through a selected link. Analyses of flows on pairs of equal-cost segments showed that quick-precision tools produced solutions that violate the proportionality condition. In two-class assignments for pairs of alternative segments, the proportions of flow found by quick-precision solutions were also different by class.
Original language | English |
---|---|
Publisher | U.S. Federal Highway Administration |
Number of pages | 98 |
State | Published - 8 Mar 2010 |