TY - GEN
T1 - Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large
AU - Jacob, Ashwin
AU - Włodarczyk, Michał
AU - Zehavi, Meirav
N1 - Publisher Copyright:
© Ashwin Jacob, Michał Włodarczyk, and Meirav Zehavi;
PY - 2023/9/1
Y1 - 2023/9/1
N2 - We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian Cycle and its generalization Longest Cycle. Since 2008, it is known that Hamiltonian Cycle is W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC’08]. By now, the question of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become a longstanding open problem. In particular, the DFVS number is the largest natural directed width measure studied in the literature. In this paper, we provide a negative answer to the question, showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et al. [ACM ToCT’21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path versions of the problems as well. On the positive side, we show that Longest Path parameterized multiplicatively above girth belongs to the class XP.
AB - We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian Cycle and its generalization Longest Cycle. Since 2008, it is known that Hamiltonian Cycle is W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC’08]. By now, the question of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become a longstanding open problem. In particular, the DFVS number is the largest natural directed width measure studied in the literature. In this paper, we provide a negative answer to the question, showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et al. [ACM ToCT’21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path versions of the problems as well. On the positive side, we show that Longest Path parameterized multiplicatively above girth belongs to the class XP.
KW - Hamiltonian cycle
KW - directed feedback vertex set
KW - directed graphs
KW - longest path
KW - parameterized complexity
UR - http://www.scopus.com/inward/record.url?scp=85173460815&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ESA.2023.65
DO - 10.4230/LIPIcs.ESA.2023.65
M3 - Conference contribution
AN - SCOPUS:85173460815
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 31st Annual European Symposium on Algorithms, ESA 2023
A2 - Li Gortz, Inge
A2 - Farach-Colton, Martin
A2 - Puglisi, Simon J.
A2 - Herman, Grzegorz
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 31st Annual European Symposium on Algorithms, ESA 2023
Y2 - 4 September 2023 through 6 September 2023
ER -