Fire season modifies the perennial plant community composition through a differential effect on obligate seeders in eastern Mediterranean woodlands

Anat Tsafrir, Yagil Osem, Hagai Shemesh, Yohay Carmel, Chanoch Soref, Ofer Ovadia

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Aim: Plant species regenerate after fire either through vegetative growth (i.e., obligate resprouters) or seed germination (i.e., obligate seeders), with some species adopting both strategies (i.e., facultative seeders). Fire season can have important consequences for the relative abundance of plant species adopting these regeneration strategies. The present study aimed to test for differential effects of fire season on perennial plant community composition. Location: Eastern Mediterranean woodland in the Judea Mountains, Israel. Methods: We conducted, for the first time, a large-scale field experiment, involving prescribed spring and autumn burns in a typical eastern Mediterranean woodland. We sampled the perennial plant community before and after the burns, quantifying temporal changes in community composition caused by seasonal fires. Results: Although fire intensity and severity were consistent between the two seasonal fires, plant community composition differed between areas subjected to spring or autumn burns. The abundances of all common species, Pistacia lenticus (obligate resprouter), Cistus spp. (obligate seeders) and Teucrium divaricatum (facultative seeder), were all reduced by both fires. Yet, their dominance in the post-fire perennial plant community was retained. Differential fire season effects were detected only among obligate seeders, which experienced a stronger reduction in abundance after spring than after autumn burns. Conclusions: Differential fire season effects on the perennial plant community resulted from phenological rather than fire intensity/severity effects. Such changes in community composition may have important implications for plant community dynamics, because they affect the circle of “fire event–plant regeneration–fire reoccurrence”, determining the probability and intensity of future fires. Furthermore, even though the eastern mediterranean ecosystem is considered highly resilient to disturbances, increased spatio-temporal variation in fire season, may result in a new vegetation mosaic, differing from the contemporary one, i.e., an alternative stable state.

Original languageEnglish
Pages (from-to)115-126
Number of pages12
JournalApplied Vegetation Science
Issue number1
StatePublished - 1 Jan 2019


  • community composition
  • facultative seeders
  • fire disturbance
  • obligate resprouters
  • obligate seeders
  • plant life form
  • plant regeneration strategy


Dive into the research topics of 'Fire season modifies the perennial plant community composition through a differential effect on obligate seeders in eastern Mediterranean woodlands'. Together they form a unique fingerprint.

Cite this