Abstract
Two-dimensional maps for the FitzHugh systems, both for the excitable and the limit cycle regimes, are analyzed in phase space and their stable fixed points are calculated. The asymptotic shapes of the solutions are analytically approximated. It is shown that for high stimulation rates the one-dimensional phase- or time-resetting maps are inadequate.
Original language | English |
---|---|
Pages (from-to) | 319-325 |
Number of pages | 7 |
Journal | Physics Letters, Section A: General, Atomic and Solid State Physics |
Volume | 355 |
Issue number | 4-5 |
DOIs | |
State | Published - 10 Jul 2006 |
ASJC Scopus subject areas
- Physics and Astronomy (all)