TY - JOUR
T1 - Flexible time domain reflectometry probe for deep vadose zone monitoring
AU - Dahan, Ofer
AU - McDonald, Eric V.
AU - Young, Michael H.
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Accurate determination of water content is an important aspect of most vadose zone monitoring programs. Real-time, continuous, in situ measurements of water content in relatively undisturbed conditions are usually limited to shallow soil horizons. We present a new methodology using time domain reflectometry (TDR) for water content monitoring in deep vadose zone horizons. The method uses flat, flexible, waveguides pressed against the wall of a borehole. The flexible TDR waveguides are attached to the outer side of a flexible sleeve filled with a liquid resin. The resin (e.g., a two-component urethane) generates hydrostatic pressure that forces the flexible waveguides against the borehole wall, ensuring a close fit to the irregular shape of the borehole walls. The probe can be used with either a standard TDR technique, which uses a cable tester (e.g., Tektronix 1520, Tek-tronix, Beaverton, OR) for collecting waveforms, or a water content reflectometer (e.g., model CS505, Campbell Scientific, Inc., Logan, UT), which provides a direct electrical output, which may be sampled using a data logger. Laboratory calibration experiments and a full-scale field experiment showed that the method is reliable and capable of providing accurate water content measurements in deep vadose zone horizons.
AB - Accurate determination of water content is an important aspect of most vadose zone monitoring programs. Real-time, continuous, in situ measurements of water content in relatively undisturbed conditions are usually limited to shallow soil horizons. We present a new methodology using time domain reflectometry (TDR) for water content monitoring in deep vadose zone horizons. The method uses flat, flexible, waveguides pressed against the wall of a borehole. The flexible TDR waveguides are attached to the outer side of a flexible sleeve filled with a liquid resin. The resin (e.g., a two-component urethane) generates hydrostatic pressure that forces the flexible waveguides against the borehole wall, ensuring a close fit to the irregular shape of the borehole walls. The probe can be used with either a standard TDR technique, which uses a cable tester (e.g., Tektronix 1520, Tek-tronix, Beaverton, OR) for collecting waveforms, or a water content reflectometer (e.g., model CS505, Campbell Scientific, Inc., Logan, UT), which provides a direct electrical output, which may be sampled using a data logger. Laboratory calibration experiments and a full-scale field experiment showed that the method is reliable and capable of providing accurate water content measurements in deep vadose zone horizons.
UR - http://www.scopus.com/inward/record.url?scp=26844567764&partnerID=8YFLogxK
U2 - 10.2113/2.2.270
DO - 10.2113/2.2.270
M3 - Article
AN - SCOPUS:26844567764
SN - 1539-1663
VL - 2
SP - 270
EP - 275
JO - Vadose Zone Journal
JF - Vadose Zone Journal
IS - 2
ER -