TY - GEN
T1 - Forced convection in a square duct with a wavy wall
AU - Shmueli, H.
AU - Ziskind, G.
AU - Letan, R.
PY - 2013/12/1
Y1 - 2013/12/1
N2 - In the present study, turbulent flow and heat transfer in a square duct with a heated wavy wall are investigated numerically using the Large Eddy Simulation (LES). A thorough validation of the numerical approach is done versus the existing results for both flat-wall square ducts and wavywall channels. It is demonstrated that a very good agreement is achieved with the literature in terms of global and local flow and heat transfer parameters. Heated wavy surfaces of various amplitudes are explored. The results are compared with those for a completely flat duct in terms of the friction factor and Nusselt number. It is shown that the friction factor increases practically linearly with the wave amplitude. On the other hand, the Nusselt number, averaged over the entire duct length, increases more steeply for the relatively small wave amplitude, but almost reaches a plateau for a further increase in the amplitude
AB - In the present study, turbulent flow and heat transfer in a square duct with a heated wavy wall are investigated numerically using the Large Eddy Simulation (LES). A thorough validation of the numerical approach is done versus the existing results for both flat-wall square ducts and wavywall channels. It is demonstrated that a very good agreement is achieved with the literature in terms of global and local flow and heat transfer parameters. Heated wavy surfaces of various amplitudes are explored. The results are compared with those for a completely flat duct in terms of the friction factor and Nusselt number. It is shown that the friction factor increases practically linearly with the wave amplitude. On the other hand, the Nusselt number, averaged over the entire duct length, increases more steeply for the relatively small wave amplitude, but almost reaches a plateau for a further increase in the amplitude
UR - http://www.scopus.com/inward/record.url?scp=84892977215&partnerID=8YFLogxK
U2 - 10.1115/HT2013-17353
DO - 10.1115/HT2013-17353
M3 - Conference contribution
AN - SCOPUS:84892977215
SN - 9780791855508
T3 - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
BT - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
T2 - ASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 14 July 2013 through 19 July 2013
ER -