Forecasting sequential data using consistent koopman autoencoders

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, Michael W. Mahoney

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

54 Scopus citations

Abstract

Recurrent neural networks are widely used on time series data, yet such models often ignore the underlying physical structures in such sequences. A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems. In this work, we propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics. Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators. Our network is directly related to the derived analysis, and its computational requirements are comparable to other baselines. We evaluate our method on a wide range of high-dimensional and short-Term dependent problems, and it achieves accurate estimates for significant prediction horizons, while also being robust to noise.

Original languageEnglish
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages452-462
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 1 Jan 2020
Externally publishedYes
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: 13 Jul 202018 Jul 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-1

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period13/07/2018/07/20

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Forecasting sequential data using consistent koopman autoencoders'. Together they form a unique fingerprint.

Cite this