Forward trijet production in proton-nucleus collisions

Y. Mulian

Research output: Contribution to journalConference articlepeer-review


Using the formalism of the light-cone wave function in perturbative QCD together with the hybrid factorization, we compute the cross-section for three particle production at forward rapidities in proton-nucleus collisions. In this picture, the three produced partons - a quark accompanied by a gluon pair, or two quarks plus one antiquark - are all generated via one or two successive splittings of a quark from the incoming proton, that was originally collinear with the latter. The three partons are put on-shell by their scattering off the nuclear target, described as Lorentz-contracted shockwave. We explicitly compute the three-parton Fock space components of the light-cone wave function of the incoming quark and its outgoing state, which encodes the information both on the evolution in time as well as the scattering process. This outgoing state is also an ingredient for other interesting calculations, like the next-to-leading order correction to the cross-section for the production of a pair of jets.

Original languageEnglish
Article number048
JournalProceedings of Science
StatePublished - 1 Jan 2018
Externally publishedYes
Event26th International Workshop on Deep-Inelastic Scattering and Related Subjects, DIS 2018 - Kobe, Japan
Duration: 16 Apr 201820 Apr 2018

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Forward trijet production in proton-nucleus collisions'. Together they form a unique fingerprint.

Cite this