Fourier transform on a cone and the minimal representation of even orthogonal group

Nadya Gurevich, David Kazhdan

Research output: Contribution to journalArticlepeer-review

Abstract

Let G be an even orthogonal quasi-split group defined over a local non-archimedean field F. We describe the subspace of smooth vectors of the minimal representation of G(F), realized on the space of square-integrable functions on a cone. Our main tool is the Fourier transform on the cone, for which we give an explicit formula.

Original languageEnglish
Pages (from-to)99-130
Number of pages32
JournalIsrael Journal of Mathematics
Volume266
Issue number1
DOIs
StatePublished - 1 Apr 2025

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Fourier transform on a cone and the minimal representation of even orthogonal group'. Together they form a unique fingerprint.

Cite this