Free sequences and the tightness of pseudoradial spaces

Santi Spadaro

Research output: Contribution to journalArticlepeer-review

Abstract

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelöf Hausdorff almost radial space X and the set-tightness of every Lindelöf Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhász, Soukup, Szentmiklóssy and Weiss by proving that if X is a Lindelöf Hausdorff space, and Xδ denotes the Gδ topology on X then t(Xδ) ≤ 2 t ( X ). Finally, we exploit this to prove that if X is a Lindelöf Hausdorff pseudoradial space then F(Xδ) ≤ 2 F ( X ).

Original languageEnglish
Article number130
JournalRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Volume114
Issue number3
DOIs
StatePublished - 1 Jul 2020
Externally publishedYes

Keywords

  • Free sequence
  • Lindelöf degree
  • Pseudoradial
  • Radial character
  • Tightness

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Free sequences and the tightness of pseudoradial spaces'. Together they form a unique fingerprint.

Cite this