Abstract
Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelöf Hausdorff almost radial space X and the set-tightness of every Lindelöf Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhász, Soukup, Szentmiklóssy and Weiss by proving that if X is a Lindelöf Hausdorff space, and Xδ denotes the Gδ topology on X then t(Xδ) ≤ 2 t ( X ). Finally, we exploit this to prove that if X is a Lindelöf Hausdorff pseudoradial space then F(Xδ) ≤ 2 F ( X ).
| Original language | English |
|---|---|
| Article number | 130 |
| Journal | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas |
| Volume | 114 |
| Issue number | 3 |
| DOIs | |
| State | Published - 1 Jul 2020 |
| Externally published | Yes |
Keywords
- Free sequence
- Lindelöf degree
- Pseudoradial
- Radial character
- Tightness
ASJC Scopus subject areas
- Analysis
- Algebra and Number Theory
- Geometry and Topology
- Computational Mathematics
- Applied Mathematics