Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, Jules Wulms

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1 + ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a “replacement” disk (if any) when a disk in one of our independent sets is deleted.

Original languageEnglish
Title of host publication40th International Symposium on Computational Geometry, SoCG 2024
EditorsWolfgang Mulzer, Jeff M. Phillips
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773164
DOIs
StatePublished - 1 Jun 2024
Externally publishedYes
Event40th International Symposium on Computational Geometry, SoCG 2024 - Athens, Greece
Duration: 11 Jun 202414 Jun 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume293
ISSN (Print)1868-8969

Conference

Conference40th International Symposium on Computational Geometry, SoCG 2024
Country/TerritoryGreece
CityAthens
Period11/06/2414/06/24

Keywords

  • Dynamic algorithm
  • Geometric intersection graph
  • Independent set

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time'. Together they form a unique fingerprint.

Cite this