This paper presents an efficient and practical procedure for the optimal design of added damping in framed structures. The total added damping is minimized while inter-story performance indices for linear and nonlinear structures are chosen and restricted to allowable values under the excitation of an ensemble of realistic ground motion records. Optimality criteria are formulated based on fully stressed characteristics of the optimal solution and a simple analysis/redesign procedure is proposed for attaining optimal designs. Results of three examples presented compare well to those obtained using formal gradient based optimization.