Abstract
Let F be a family of convex sets in Rd, which are colored with d+ 1 colors. We say that F satisfies the Colorful Helly Property if every rainbow selection of d+ 1 sets, one set from each color class, has a non-empty common intersection. The Colorful Helly Theorem of Lovász states that for any such colorful family F there is a color class Fi⊂ F, for 1 ≤ i≤ d+ 1 , whose sets have a non-empty intersection. We establish further consequences of the Colorful Helly hypothesis. In particular, we show that for each dimension d≥ 2 there exist numbers f(d) and g(d) with the following property: either one can find an additional color class whose sets can be pierced by f(d) points, or all the sets in F can be crossed by g(d) lines.
Original language | English |
---|---|
Pages (from-to) | 848-866 |
Number of pages | 19 |
Journal | Discrete and Computational Geometry |
Volume | 63 |
Issue number | 4 |
DOIs | |
State | Published - 1 Jun 2020 |
Keywords
- Colorful Helly-type theorems
- Convex sets
- Geometric transversals
- Line transversals
- Transversal numbers
- Weak epsilon-nets
ASJC Scopus subject areas
- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics