TY - JOUR
T1 - GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver
AU - Korin, Efrat
AU - Bejerano, Tzlil
AU - Cohen, Smadar
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/11/28
Y1 - 2017/11/28
N2 - RNA interference (RNAi) has the potential to reversibly silence any gene with high efficiency and specificity. To fulfill the clinical potential of RNAi, delivery vehicles are required to transport the short interfering RNA (siRNA) to the site of action in the cells of target tissues. Here, we describe the features of novel liver-targeted siRNA nanoparticles (NPs), co-assembled due to the complexation of alginate sulfate (AlgS) with siRNA, mediated by calcium ions bridges (AlgS–Ca2+-siRNA NPs) and then bioconjugation of a targeting ligand onto the AlgS upon the NP surface. To gain insight into the complexation process and confirm AlgS accessibility on NP surface, we investigated different schemes for fabrication. All resulting NPs, independently of the component addition order, were of average size of 130–150 nm, had surface charge of <− 10 mV, exhibited a similar atomic composition on their surface, were efficiently uptaken by HepG2 cells and induced approx. ~ 90% silencing of STAT3 gene. Ca2+ and AlgS concentrations in NPs affected cell uptake and gene silencing. Bioconjugation of N-acetylgalactosamine (GalNAc), a ligand to the asialoglycoprotein receptor (ASGPR) overexpressed on hepatocytes, was validated by XPS analysis and cell uptake by receptor-mediated mechanism. After intravenous (i.v.) injection to BALB/c mice, GalNAc-NPs were targeted to liver by a factor of ~ 3 with lesser renal clearance compared to non-targeted NPs. We foresee that the combined advantages of site-specific targeting and reversibility of the tri-component NPs as well as the simplicity of their fabrication make them an attractive system for targeted delivery of siRNA.
AB - RNA interference (RNAi) has the potential to reversibly silence any gene with high efficiency and specificity. To fulfill the clinical potential of RNAi, delivery vehicles are required to transport the short interfering RNA (siRNA) to the site of action in the cells of target tissues. Here, we describe the features of novel liver-targeted siRNA nanoparticles (NPs), co-assembled due to the complexation of alginate sulfate (AlgS) with siRNA, mediated by calcium ions bridges (AlgS–Ca2+-siRNA NPs) and then bioconjugation of a targeting ligand onto the AlgS upon the NP surface. To gain insight into the complexation process and confirm AlgS accessibility on NP surface, we investigated different schemes for fabrication. All resulting NPs, independently of the component addition order, were of average size of 130–150 nm, had surface charge of <− 10 mV, exhibited a similar atomic composition on their surface, were efficiently uptaken by HepG2 cells and induced approx. ~ 90% silencing of STAT3 gene. Ca2+ and AlgS concentrations in NPs affected cell uptake and gene silencing. Bioconjugation of N-acetylgalactosamine (GalNAc), a ligand to the asialoglycoprotein receptor (ASGPR) overexpressed on hepatocytes, was validated by XPS analysis and cell uptake by receptor-mediated mechanism. After intravenous (i.v.) injection to BALB/c mice, GalNAc-NPs were targeted to liver by a factor of ~ 3 with lesser renal clearance compared to non-targeted NPs. We foresee that the combined advantages of site-specific targeting and reversibility of the tri-component NPs as well as the simplicity of their fabrication make them an attractive system for targeted delivery of siRNA.
KW - ASGPR
KW - Alginate-sulfate
KW - Gene silencing
KW - Liver targeting
KW - Nanoparticles
KW - siRNA
UR - http://www.scopus.com/inward/record.url?scp=85030993594&partnerID=8YFLogxK
U2 - 10.1016/j.jconrel.2017.10.001
DO - 10.1016/j.jconrel.2017.10.001
M3 - Article
C2 - 28987883
AN - SCOPUS:85030993594
SN - 0168-3659
VL - 266
SP - 310
EP - 320
JO - Journal of Controlled Release
JF - Journal of Controlled Release
ER -