Gaussian Approximation of Quantization Error for Estimation from Compressed Data

Alon Kipnis, Galen Reeves

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We consider the statistical connection between the quantized representation of a high dimensional signal X using a random spherical code and the observation of X under an additive white Gaussian noise (AWGN). We show that given X, the conditional Wasserstein distance between its bitrate-R quantized version and its observation under AWGN of signal-to-noise ratio 22R - 1 is sub-linear in the problem dimension. We then utilize this fact to connect the mean squared error (MSE) attained by an estimator based on an AWGN-corrupted version of X to the MSE attained by the same estimator when fed with its bitrate-R quantized version.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages2029-2033
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - 1 Jul 2019
Externally publishedYes
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Gaussian Approximation of Quantization Error for Estimation from Compressed Data'. Together they form a unique fingerprint.

Cite this