Generating Alerts from Breathing Pattern Outliers

Chloé Benmussa, Jessica R. Cauchard, Zohar Yakhini

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Analysing human physiological data allows access to the health state and the state of mind of the subject individual. Whenever a person is sick, having a panic attack, happy or scared, physiological signals will be different. In terms of physiological signals, we focus, in this manuscript, on monitoring breathing patterns. The scope can be extended to also address heart rate and other variables. We describe an analysis of breathing rate patterns during activities including resting, walking, running and watching a movie. We model normal breathing behaviours by statistically analysing signals, processed to represent quantities of interest. We consider moving maximum/minimum, the amplitude and the Fourier transform of the respiration signal, working with different window sizes. We then learn a statistical model for the basal behaviour, per individual, and detect outliers. When outliers are detected, a system that incorporates our approach would send a visible signal through a smart garment or through other means. We describe alert generation performance in two datasets—one literature dataset and one collected as a field study for this work. In particular, when learning personal rest distributions for the breathing signals of 14 subjects, we see alerts generated more often when the same individual is running than when they are tested in rest conditions.

Original languageEnglish
Article number6306
JournalSensors
Volume22
Issue number16
DOIs
StatePublished - 1 Aug 2022

Keywords

  • alert generation
  • outlier detection
  • statistical modelling
  • wearables

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Generating Alerts from Breathing Pattern Outliers'. Together they form a unique fingerprint.

Cite this