TY - JOUR
T1 - Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression
AU - Kamenšek, Simona
AU - Podlesek, Zdravko
AU - Gillor, Osnat
AU - Žgur-Bertok, Darja
N1 - Funding Information:
We thank Ben Glick for generously providing pDsRed-Express2-N1 as well as Uri Alon for strains carrying the lexA-gfp, recA-gfp and umuDC-gfp fusions. This work was funded by grant P1-0198 from the Slovenian Research Agency (ARRS) and the FP6 Sixth EU framework programme for Research and Technological Development: Transnational Access, Dryland Research Specific Support Action (SSA), Jacob Blaustein Institutes of Desert Research, Ben Gurion University of the Negev. Simona Kamenšek is a recipient of a Ph.D grant from ARRS.
PY - 2010/11/15
Y1 - 2010/11/15
N2 - Background. Phenotypic heterogeneity may ensure that a small fraction of a population survives environmental perturbations or may result in lysis in a subpopulation, to increase the survival of siblings. Genes involved in DNA repair and population dynamics play key roles in rapid responses to environmental conditions. In Escherichia coli the transcriptional repressor LexA controls a coordinated cellular response to DNA damage designated the SOS response. Expression of LexA regulated genes, e.g. colicin encoding genes, recA, lexA and umuDC, was examined utilizing transcription fusions with the promoterless gfp at the single cell level. Results. The investigated LexA regulated genes exhibited heterogeneity, as only in a small fraction of the population more intense fluorescence was observed. Unlike recA and lexA, the pore forming and nuclease colicin activity genes as well as umuDC, exhibited no basal level activity. However, in a lexA defective strain high level expression of the gene fusions was observed in the large majority of the cells. All of the investigated genes were expressed in a recA defective strain, albeit at lower levels, revealing expression in the absence of a spontaneous SOS response. In addition, the simultaneous expression of cka, encoding the pore forming colicin K, and lexA, investigated at the single cell level revealed high level expression of only cka in rare individual cells. Conclusion. LexA regulated genes exhibit phenotypic heterogeneity as high level expression is observed in only a small subpopulation of cells. Heterogenous expression is established primarily by stochastic factors and the binding affinity of LexA to SOS boxes.
AB - Background. Phenotypic heterogeneity may ensure that a small fraction of a population survives environmental perturbations or may result in lysis in a subpopulation, to increase the survival of siblings. Genes involved in DNA repair and population dynamics play key roles in rapid responses to environmental conditions. In Escherichia coli the transcriptional repressor LexA controls a coordinated cellular response to DNA damage designated the SOS response. Expression of LexA regulated genes, e.g. colicin encoding genes, recA, lexA and umuDC, was examined utilizing transcription fusions with the promoterless gfp at the single cell level. Results. The investigated LexA regulated genes exhibited heterogeneity, as only in a small fraction of the population more intense fluorescence was observed. Unlike recA and lexA, the pore forming and nuclease colicin activity genes as well as umuDC, exhibited no basal level activity. However, in a lexA defective strain high level expression of the gene fusions was observed in the large majority of the cells. All of the investigated genes were expressed in a recA defective strain, albeit at lower levels, revealing expression in the absence of a spontaneous SOS response. In addition, the simultaneous expression of cka, encoding the pore forming colicin K, and lexA, investigated at the single cell level revealed high level expression of only cka in rare individual cells. Conclusion. LexA regulated genes exhibit phenotypic heterogeneity as high level expression is observed in only a small subpopulation of cells. Heterogenous expression is established primarily by stochastic factors and the binding affinity of LexA to SOS boxes.
UR - http://www.scopus.com/inward/record.url?scp=78149289114&partnerID=8YFLogxK
U2 - 10.1186/1471-2180-10-283
DO - 10.1186/1471-2180-10-283
M3 - Article
C2 - 21070632
AN - SCOPUS:78149289114
SN - 1471-2180
VL - 10
JO - BMC Microbiology
JF - BMC Microbiology
M1 - 283
ER -