TY - JOUR
T1 - Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population
AU - Wen, Weiwei
AU - Li, Kun
AU - Alseekh, Saleh
AU - Omranian, Nooshin
AU - Zhao, Lijun
AU - Zhou, Yang
AU - Xiao, Yingjie
AU - Jin, Min
AU - Yang, Ning
AU - Liu, Haijun
AU - Florian, Alexandra
AU - Li, Wenqiang
AU - Pan, Qingchun
AU - Nikoloski, Zoran
AU - Yan, Jianbing
AU - Fernie, Alisdair R.
N1 - Publisher Copyright:
© 2015 American Society of Plant Biologists. All rights reserved.
PY - 2015/8/12
Y1 - 2015/8/12
N2 - Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R2 = 2.4 to 15%) to major effects (13.8%of the mapped QTL, R2 >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.
AB - Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R2 = 2.4 to 15%) to major effects (13.8%of the mapped QTL, R2 >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.
UR - http://www.scopus.com/inward/record.url?scp=84938837059&partnerID=8YFLogxK
U2 - 10.1105/tpc.15.00208
DO - 10.1105/tpc.15.00208
M3 - Article
C2 - 26187921
AN - SCOPUS:84938837059
SN - 1040-4651
VL - 27
SP - 1839
EP - 1856
JO - Plant Cell
JF - Plant Cell
IS - 7
ER -