Geometric Counting on Wavefront Real Spherical Spaces

Bernhard Krötz, Eitan Sayag, Henrik Schlichtkrull

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We provide Lp-versus L-bounds for eigenfunctions on a real spherical space Z of wavefront type. It is shown that these bounds imply a non-trivial error term estimate for lattice counting on Z. The paper also serves as an introduction to geometric counting on spaces of the mentioned type.

Original languageEnglish
Pages (from-to)488-531
Number of pages44
JournalActa Mathematica Sinica, English Series
Volume34
Issue number3
DOIs
StatePublished - 1 Mar 2018

Keywords

  • Homogeneous spaces
  • error term
  • lattice counting
  • norm comparison of eigenfunctions
  • real spherical spaces
  • spectral analysis
  • wavefront lemma

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Geometric Counting on Wavefront Real Spherical Spaces'. Together they form a unique fingerprint.

Cite this