Abstract
It is claimed that the abstract analytic continuation of hypercubic lattices to noninteger dimensionalities can be implemented explicitly by certain fractal lattices of low lacunarity. These lattices are special examples of Sierpinski carpets. Their being of low lacunarity means that they are arbitrarily close to being translationally invariant. The claim is substantiated for the Ising model in D=1+ dimensions, and for resistor network models with 1<D<2.
Original language | English |
---|---|
Pages (from-to) | 145-148 |
Number of pages | 4 |
Journal | Physical Review Letters |
Volume | 50 |
Issue number | 3 |
DOIs | |
State | Published - 1 Jan 1983 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy