Abstract
Consider a set of deformable objects undergoing geometric and radiometric transformations. As a result of the action of these transformations, the set of different realizations of each object is generally a manifold in the space of observations. Assuming the geometric deformations an object undergoes, belong to some finite dimensional family, it has been shown that the universal manifold embedding (UME) provides a set of nonlinear operators that universally maps each of the different manifolds, where each manifold is generated by the set all of possible appearances of a single object, into a distinct linear subspace of an Euclidean space. In this paper, we generalize this framework to the case where the observed object undergoes both an affine geometric transformation, and a monotonic radiometric transformation, and present a novel framework for the detection and recognition of the deformable objects. Applying to each of the observations an operator that makes it invariant to monotonic amplitude transformations, but is geometry-covariant with the affine transformation, the set of all possible observations on that object is mapped by the UME into a single linear subspace - invariant with respect to both the geometric and radiometric transformations. The embedding of the space of observations is independent of the specific observed object; hence it is universal. The invariant representation of the object is the basis of a matched manifold detection and tracking framework of objects that undergo complex geometric and radiometric deformations: the observed surface is tessellated into a set of tiles such that the deformation of each one is well approximated by an affine geometric transformation and a monotonic transformation of the measured intensities. Since each tile is mapped by the radiometry invariant UME to a distinct linear subspace, the detection and tracking problems are solved by evaluating distances between linear subspaces. Classification in this context becomes a problem of determining which labeled subspace in a Grassmannian is closest to a subspace in the same Grassmannian, where the latter has been generated by radiometry invariant UME from an unlabeled observation.
Original language | English |
---|---|
Article number | 7913573 |
Pages (from-to) | 4363-4377 |
Number of pages | 15 |
Journal | IEEE Transactions on Image Processing |
Volume | 26 |
Issue number | 9 |
DOIs | |
State | Published - 1 Sep 2017 |
Keywords
- Distance learning
- image analysis
- matched filters
- object detection
ASJC Scopus subject areas
- Software
- Computer Graphics and Computer-Aided Design