TY - JOUR
T1 - Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol
AU - Azab, Abed N.
AU - He, Quan
AU - Ju, Shulin
AU - Li, Guiling
AU - Greenberg, Miriam L.
PY - 2007/2/1
Y1 - 2007/2/1
N2 - Studies have shown that the inositol biosynthetic pathway and the enzyme glycogen synthase kinase-3 (GSK-3) are targets of the mood-stabilizing drugs lithium and valproate. However, a relationship between these targets has not been previously described. We hypothesized that GSK-3 may play a role in inositol synthesis, and that loss of GSK-3 may lead to inositol depletion, thus providing a mechanistic link between the two drug targets. Utilizing a yeast Saccharomyces cerevisiae gsk-3Δ quadruple-null mutant, in which all four genes encoding homologues of mammalian GSK-3 are disrupted, we tested the hypothesis that GSK-3 is required for de novo inositol biosynthesis. The gsk-3Δ mutant exhibited multiple features of inositol depletion, including defective growth in inositol-lacking medium, decreased intracellular inositol, increased INO1 and ITR1 expression, and decreased levels of phosphatidylinositol. Treatment of wild-type cells with a highly specific GSK-3 inhibitor led to a significant increase in INO1 expression. Supplementation with inositol alleviated the temperature sensitivity of gsk-3Δ. Activity of myo-inositol-3 phosphate synthase, the rate-limiting enzyme in inositol de novo biosynthesis, was decreased in gsk-3Δ. These results demonstrate for the first time that GSK-3 is required for optimal myo-inositol-3 phosphate synthase activity and de novo inositol biosynthesis, and that loss of GSK-3 activity causes inositol depletion.
AB - Studies have shown that the inositol biosynthetic pathway and the enzyme glycogen synthase kinase-3 (GSK-3) are targets of the mood-stabilizing drugs lithium and valproate. However, a relationship between these targets has not been previously described. We hypothesized that GSK-3 may play a role in inositol synthesis, and that loss of GSK-3 may lead to inositol depletion, thus providing a mechanistic link between the two drug targets. Utilizing a yeast Saccharomyces cerevisiae gsk-3Δ quadruple-null mutant, in which all four genes encoding homologues of mammalian GSK-3 are disrupted, we tested the hypothesis that GSK-3 is required for de novo inositol biosynthesis. The gsk-3Δ mutant exhibited multiple features of inositol depletion, including defective growth in inositol-lacking medium, decreased intracellular inositol, increased INO1 and ITR1 expression, and decreased levels of phosphatidylinositol. Treatment of wild-type cells with a highly specific GSK-3 inhibitor led to a significant increase in INO1 expression. Supplementation with inositol alleviated the temperature sensitivity of gsk-3Δ. Activity of myo-inositol-3 phosphate synthase, the rate-limiting enzyme in inositol de novo biosynthesis, was decreased in gsk-3Δ. These results demonstrate for the first time that GSK-3 is required for optimal myo-inositol-3 phosphate synthase activity and de novo inositol biosynthesis, and that loss of GSK-3 activity causes inositol depletion.
UR - http://www.scopus.com/inward/record.url?scp=33846670518&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2958.2007.05591.x
DO - 10.1111/j.1365-2958.2007.05591.x
M3 - Article
AN - SCOPUS:33846670518
SN - 0950-382X
VL - 63
SP - 1248
EP - 1258
JO - Molecular Microbiology
JF - Molecular Microbiology
IS - 4
ER -