TY - JOUR
T1 - Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes
AU - Shtreimer Kandiyote, Nitzan
AU - Avisdris, Tehila
AU - Arnusch, Christopher J.
AU - Kasher, Roni
N1 - Funding Information:
We thank the Israel Science Foundation (grant no. 1474-13 to CJA) for financial support. N.S.K. is grateful to the Pratt Foundation for a Ph.D. scholarship. C.J.A. thanks the Canadian Associates of Ben Gurion University of the Negev (CABGU) Quebec Region for support.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/2/5
Y1 - 2019/2/5
N2 - Bacterial biofilms that are formed on surfaces are highly detrimental to many areas of industry and medicine. Seawater desalination by reverse osmosis (RO) suffers from biofilm growth on the membranes (biofouling), which limits its widespread use because biofouling decreases water permeance and necessitates module cleaning and replacement, leading to increased economic and environmental costs. Antimicrobial peptides (AMPs) bound covalently to RO membranes inhibit biofilm growth and might delay membrane biofouling. Here we examined how various hydrophilic membrane coatings composed of zwitterionic, neutral, positively charged, and poly(ethylene glycol) (PEG)-grafted polymers affected the biocidal activity and the biofilm inhibition of a covalently bonded AMP on RO membranes. AMP magainin-2 was linked by the copper-catalyzed azide-alkyne cycloaddition reaction to a series of RO membranes that were grafted with different methacrylate polymers. Surface characterization by infrared spectroscopy, X-ray photoelectron spectroscopy, and water drop contact angle gave evidence of successful RO modifications, and zeta potential analysis reflected the increase in surface charge due to the linked, positively charged peptide. All AMP-modified membranes inhibited Pseudomonas aeruginosa growth compared to unmodified membranes, and the grafted methacrylic polymers did not significantly interfere with the peptide activity. On the other hand, membranes coated with zwitterionic and other acrylate polymers including AMP attachment inhibited biofilm growth more than either the AMP or the polymer coating alone. This enhancement led to ∼20% less biofilm biovolume on the membrane surfaces. The combination of antimicrobial coatings with polymer coatings known to resist fouling might aid future designs of surface coatings susceptible to biofilm growth.
AB - Bacterial biofilms that are formed on surfaces are highly detrimental to many areas of industry and medicine. Seawater desalination by reverse osmosis (RO) suffers from biofilm growth on the membranes (biofouling), which limits its widespread use because biofouling decreases water permeance and necessitates module cleaning and replacement, leading to increased economic and environmental costs. Antimicrobial peptides (AMPs) bound covalently to RO membranes inhibit biofilm growth and might delay membrane biofouling. Here we examined how various hydrophilic membrane coatings composed of zwitterionic, neutral, positively charged, and poly(ethylene glycol) (PEG)-grafted polymers affected the biocidal activity and the biofilm inhibition of a covalently bonded AMP on RO membranes. AMP magainin-2 was linked by the copper-catalyzed azide-alkyne cycloaddition reaction to a series of RO membranes that were grafted with different methacrylate polymers. Surface characterization by infrared spectroscopy, X-ray photoelectron spectroscopy, and water drop contact angle gave evidence of successful RO modifications, and zeta potential analysis reflected the increase in surface charge due to the linked, positively charged peptide. All AMP-modified membranes inhibited Pseudomonas aeruginosa growth compared to unmodified membranes, and the grafted methacrylic polymers did not significantly interfere with the peptide activity. On the other hand, membranes coated with zwitterionic and other acrylate polymers including AMP attachment inhibited biofilm growth more than either the AMP or the polymer coating alone. This enhancement led to ∼20% less biofilm biovolume on the membrane surfaces. The combination of antimicrobial coatings with polymer coatings known to resist fouling might aid future designs of surface coatings susceptible to biofilm growth.
UR - http://www.scopus.com/inward/record.url?scp=85061060646&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.8b03851
DO - 10.1021/acs.langmuir.8b03851
M3 - Article
AN - SCOPUS:85061060646
SN - 0743-7463
VL - 35
SP - 1935
EP - 1943
JO - Langmuir
JF - Langmuir
IS - 5
ER -