Abstract
The successful completion of the hate speech detection task hinges upon the availability of rich and variable labeled data, which is hard to obtain. In this work, we present a new approach for data augmentation that uses as input real unlabelled data, which is carefully selected from online platforms where invited hate speech is abundant. We show that by harvesting and processing this data (in an automatic manner), one can augment existing manually-labeled datasets to improve the classification performance of hate speech classification models. We observed an improvement in F1-score ranging from 2.7% and up to 9.5%, depending on the task (in- or cross-domain) and the model used.
Original language | English |
---|---|
Pages | 2241-2248 |
Number of pages | 8 |
State | Published - 1 Jan 2022 |
Event | 2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Abu Dhabi, United Arab Emirates Duration: 7 Dec 2022 → 11 Dec 2022 |
Conference
Conference | 2022 Findings of the Association for Computational Linguistics: EMNLP 2022 |
---|---|
Country/Territory | United Arab Emirates |
City | Abu Dhabi |
Period | 7/12/22 → 11/12/22 |
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems