Harnessing Peptide Binding to Capture and Reclaim Phosphate

Whitney C. Fowler, Chuting Deng, Gabriella M. Griffen, Tess Teodoro, Ashley Z. Guo, Michal Zaiden, Moshe Gottlieb, Juan J. De Pablo, Matthew V. Tirrell

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

With rising consumer demands, society is tapping into wastewater as an innovative source to recycle depleting resources. Novel reclamation technologies have been recently explored for this purpose, including several that optimize natural biological processes for targeted reclamation. However, this emerging field has a noticeable dearth of synthetic material technologies that are programmed to capture, release, and recycle specified targets; and of the novel materials that do exist, synthetic platforms incorporating biologically inspired mechanisms are rare. We present here a prototype of a materials platform utilizing peptide amphiphiles that has been molecularly engineered to sequester, release, and reclaim phosphate through a stimuli-responsive pH trigger, exploiting a protein-inspired binding mechanism that is incorporated directly into the self-assembled material network. This material is able to harvest and controllably release phosphate for multiple cycles of reuse, and it is selective over nitrate and nitrite. We have determined by simulations that the binding conformation of the peptide becomes constrained in the dense micelle corona at high pH such that phosphate is expelled when it otherwise would be preferentially bound. However, at neutral pH, this dense structure conversely employs multichain binding to further stabilize phosphate when it would otherwise be unbound, opening opportunities for higher-order conformational binding design to be engineered into this controllably packed corona. With this work, we are pioneering a new platform to be readily altered to capture other valuable targets, presenting a new class of capture and release materials for recycling resources on the nanoscale.

Original languageEnglish
Pages (from-to)4440-4450
Number of pages11
JournalJournal of the American Chemical Society
Volume143
Issue number11
DOIs
StatePublished - 24 Mar 2021

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Harnessing Peptide Binding to Capture and Reclaim Phosphate'. Together they form a unique fingerprint.

Cite this