TY - JOUR
T1 - Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power
AU - Schertzer, Eliran
AU - Riemer, Raziel
N1 - Publisher Copyright:
© 2015 Schertzer and Riemer; licensee BioMed Central.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Background: Harvesting energy from human motion is an innovative alternative to using batteries as a source of electrical power for portable devices. Yet there are no guidelines as to whether energy harvesting should be preferred over batteries. This paper introduces an approach to determine which source of energy should be preferred. The proposed approach compares the metabolic power while harvesting energy and while using batteries (or any other power supply, e.g., solar panels), which provide equal amount of energy. Energy harvesting is preferred over batteries if the metabolic power required to harvest the energy is lower than that required to carry the batteries. Metabolic power can be experimentally measured. However, for design purposes, it is essential to assess differences in metabolic power as a function of the device parameters. The model: To this end, based on the proposed approach, we develop a mathematical model that considers the following parameters: the device's mass, its location on the human body, the electrical power output, cost of harvesting (COH), walking time, and the specific energy of the battery. Method: We apply the model in two ways. First, we conduct case studies to examine current ankle, knee, and back energy harvesting devices, and assess the walking times that would make these devices preferable over batteries. Second, we conduct a design scenarios analysis, which examines future device developments. Results: The case studies reveal that to be preferred over batteries, current harvesting devices located on the ankle, knee, or back would require walking for 227 hours, 98 hours, or 260 hours, respectively. This would replace batteries weighing 6.81 kg (ankle), 5.88 kg (knee), or 2.6 kg (back). The design scenarios analysis suggests that for harvesting devices to be beneficial with less than 25 walking hours, future development should focus on light harvesting devices (less than 0.2 kg) with low COH (equal or lower than 0). Finally, a comparison with portable commercial solar panels reveals that under ideal sun exposure conditions, solar panels outperform the current harvesting devices. Conclusions: Our model offers a tool for assessing the performance of energy harvesting devices.
AB - Background: Harvesting energy from human motion is an innovative alternative to using batteries as a source of electrical power for portable devices. Yet there are no guidelines as to whether energy harvesting should be preferred over batteries. This paper introduces an approach to determine which source of energy should be preferred. The proposed approach compares the metabolic power while harvesting energy and while using batteries (or any other power supply, e.g., solar panels), which provide equal amount of energy. Energy harvesting is preferred over batteries if the metabolic power required to harvest the energy is lower than that required to carry the batteries. Metabolic power can be experimentally measured. However, for design purposes, it is essential to assess differences in metabolic power as a function of the device parameters. The model: To this end, based on the proposed approach, we develop a mathematical model that considers the following parameters: the device's mass, its location on the human body, the electrical power output, cost of harvesting (COH), walking time, and the specific energy of the battery. Method: We apply the model in two ways. First, we conduct case studies to examine current ankle, knee, and back energy harvesting devices, and assess the walking times that would make these devices preferable over batteries. Second, we conduct a design scenarios analysis, which examines future device developments. Results: The case studies reveal that to be preferred over batteries, current harvesting devices located on the ankle, knee, or back would require walking for 227 hours, 98 hours, or 260 hours, respectively. This would replace batteries weighing 6.81 kg (ankle), 5.88 kg (knee), or 2.6 kg (back). The design scenarios analysis suggests that for harvesting devices to be beneficial with less than 25 walking hours, future development should focus on light harvesting devices (less than 0.2 kg) with low COH (equal or lower than 0). Finally, a comparison with portable commercial solar panels reveals that under ideal sun exposure conditions, solar panels outperform the current harvesting devices. Conclusions: Our model offers a tool for assessing the performance of energy harvesting devices.
KW - Battery
KW - Biomechanical energy harvesting
KW - Metabolic rate
KW - Wearable robots
UR - http://www.scopus.com/inward/record.url?scp=84925868253&partnerID=8YFLogxK
U2 - 10.1186/s12984-015-0023-7
DO - 10.1186/s12984-015-0023-7
M3 - Article
C2 - 25879232
AN - SCOPUS:84925868253
SN - 1743-0003
VL - 12
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
IS - 1
M1 - 30
ER -