Heteromultimeric delayed-rectifier K+ channels in Schwann cells: Developmental expression and role in cell proliferation

Alexander Sobko, Asher Peretz, Orian Shirihai, Sarah Etkin, Vera Cherepanova, Daniel Dagan, Bernard Attali

Research output: Contribution to journalArticlepeer-review

69 Scopus citations


Schwann cells (SCs) are responsible for myelination of nerve fibers in the peripheral nervous system. Voltage-dependent K+ currents, including inactivating A-type (K(A)), delayed-rectifier (K(D)), and inward-rectifier (K(IR))K+ channels, constitute the main conductances found in SCs. Physiological studies have shown that K(D) channels may play an important role in SC proliferation and that they are downregulated in the soma as proliferation ceases and myelination proceeds. Recent studies have begun to address the molecular identity of K+ channels in SCs. Here, we show that a large repertoire of K+ channel α subunits of the Shaker (Kv1.1, Kv1.2, Kv1.4, and Kv1.5), Shab (Kv2.1), and Shaw (Kv3.1b and Kv3.2) families is expressed in mouse SCs and sciatic nerve. We characterized heteromultimeric channel complexes that consist of either Kv1.5 and Kv1.2 or Kv1.5 and Kv1.4. In postnatal day 4 (P4) sciatic nerve, most of the Kv1.2 channel subunits are involved in heteromultimeric association with Kv1.5. Despite the presence of Kv1.1 and Kv1.2 α subunits, the K+ currents were unaffected by dendrotoxin I (DTX), suggesting that DTX-sensitive channel complexes do not account substantially for SC K(D) currents. SC proliferation was found to be potently blocked by quinidine or 4-aminopyridine but not by DTX. Consistent with previous physiological studies, our data show that there is a marked downregulation of all K(D) channel α subunits from P1-P4 to P40 in the sciatic nerve. Our results suggest that K(D) currents are accounted for by a complex combinatorial activity of distinct K+ channel complexes and confirm that K(D) channels are involved in SC proliferation.

Original languageEnglish
Pages (from-to)10398-10408
Number of pages11
JournalJournal of Neuroscience
Issue number24
StatePublished - 15 Dec 1998
Externally publishedYes


  • Development
  • Heteromultimeric association
  • Ion channels
  • K channels
  • Myelination
  • Proliferation
  • Schwann cells


Dive into the research topics of 'Heteromultimeric delayed-rectifier K<sup>+</sup> channels in Schwann cells: Developmental expression and role in cell proliferation'. Together they form a unique fingerprint.

Cite this