High frequency oscillations of first eigenmodes in axisymmetric shells as the thickness tends to zero

Marie Chaussade-Beaudouin, Monique Dauge, Erwan Faou, Zohar Yosibash

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The lowest eigenmode of thin axisymmetric shells is investigated for two physical models (acoustics and elasticity) as the shell thickness (2ε) tends to zero. Using a novel asymptotic expansion we determine the behavior of the eigenvalue λ(ε) and the eigenvector angular frequency k(ε) for shells with Dirichlet boundary conditions along the lateral boundary, and natural boundary conditions on the other parts. First, the scalar Laplace operator for acoustics is addressed, for which k(ε) is always zero. In contrast to it, for the Lamé system of linear elasticity several different types of shells are defined, characterized by their geometry, for which k(ε) tends to infinity as ε tends to zero. For two families of shells: cylinders and elliptical barrels we explicitly provide λ(ε) and k(ε) and demonstrate by numerical examples the different behavior as e tends to zero.

Original languageEnglish
Pages (from-to)89-110
Number of pages22
JournalOperator Theory: Advances and Applications
Volume258
DOIs
StatePublished - 1 Jan 2017

Keywords

  • Axisymmetric shell
  • Developable shell
  • Koiter
  • Lamé
  • Sensitive shell

Fingerprint

Dive into the research topics of 'High frequency oscillations of first eigenmodes in axisymmetric shells as the thickness tends to zero'. Together they form a unique fingerprint.

Cite this