High-performance inertial confinement fusion target implosions on OMEGA

D. D. Meyerhofer, R. L. McCrory, R. Betti, T. R. Boehly, D. T. Casey, T. J.B. Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R. Epstein, K. A. Fletcher, J. A. Frenje, Y. Yu Glebov, V. N. Goncharov, D. R. Harding, S. X. Hu, I. V. Igumenshchev, J. P. Knauer, C. K. Li, J. A. MarozasF. J. Marshall, P. W. McKenty, P. M. Nilson, S. P. Padalino, R. D. Petrasso, P. B. Radha, S. P. Regan, T. C. Sangster, F. H. Séguin, W. Seka, R. W. Short, D. Shvarts, S. Skupsky, J. M. Soures, C. Stoeckl, W. Theobald, B. Yaakobi

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (∼300 mg cm-2). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

Original languageEnglish
Article number053010
JournalNuclear Fusion
Issue number5
StatePublished - 1 May 2011
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Condensed Matter Physics


Dive into the research topics of 'High-performance inertial confinement fusion target implosions on OMEGA'. Together they form a unique fingerprint.

Cite this