High photoelectrochemical activity of CuO nanoflakes grown on Cu foil

Subish John, Samba Siva Vadla, Somnath C. Roy

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

CuO is a narrow band gap p-type semiconducting material having a wide range of applications. However, it is quite challenging to obtain phase pure CuO nanostructures grown directly on Cu substrate as most of the synthesis techniques like thermal oxidation results in the formation of additional Cu2O phase. In this work, we report the growth of CuO nanoflakes without the formation of Cu2O by a facile two-step synthesis process which consist of electrochemical anodization of Cu foil followed by low-temperature hydrothermal treatment at 100 °C. The phase purity of the sample is confirmed through XRD, XPS, and HRTEM. Further, photocurrent response of the sample is evaluated, and a rapid thermal treatment was used to improve the photo-response without altering the phase and morphology of the CuO nanoflakes. Such a process at 400 °C for 10 s resulted in a high photocurrent density of −4.6 mAcm−2 (at 0.05 V vs. RHE under AM 1.5G conditions). Electrochemical impedance spectroscopy and Mott Schottky analysis shows the direct role of rapid thermal treatment in increasing the charge carrier density of the sample.

Original languageEnglish
Pages (from-to)390-399
Number of pages10
JournalElectrochimica Acta
Volume319
DOIs
StatePublished - 1 Oct 2019
Externally publishedYes

Keywords

  • Electrochemical anodization
  • Phase pure CuO
  • Photoelectrochemical water splitting
  • Rapid thermal treatment

ASJC Scopus subject areas

  • General Chemical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'High photoelectrochemical activity of CuO nanoflakes grown on Cu foil'. Together they form a unique fingerprint.

Cite this