High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity

Swastik Kopparty, Or Meir, Noga Ron-Zewi, Shubhangi Saraf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1) and constant relative distance, whose query complexity is exp(Õ(√logn)) (for LCCs) and (log n)O(log log n) (forLTCs). Previously such codes were known to exist only with Ω(nβ) query complexity (for constant β > 0). In addition to having small query complexity, our codes also achieve better trade-offs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large-alphabet error-correcting code to further be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such trade-offs between the rate and the relative distance were previously not known for any o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters. Our codes are based on a technique of Alon, Edmonds and Luby. We observe that this technique can be used as a general distance-amplification method, and show that it interacts well with local correctors and testers. We obtain our main results by applying this method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant relative distance.

Original languageEnglish
Title of host publicationSTOC 2016 - Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing
EditorsYishay Mansour, Daniel Wichs
PublisherAssociation for Computing Machinery
Pages202-215
Number of pages14
ISBN (Electronic)9781450341325
DOIs
StatePublished - 19 Jun 2016
Externally publishedYes
Event48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016 - Cambridge, United States
Duration: 19 Jun 201621 Jun 2016

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
Volume19-21-June-2016
ISSN (Print)0737-8017

Conference

Conference48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016
Country/TerritoryUnited States
CityCambridge
Period19/06/1621/06/16

Keywords

  • Locally correctable codes
  • Locally decodable codes
  • Locally testable codes
  • Query complexity
  • Singleton bound
  • Zyablov bound

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity'. Together they form a unique fingerprint.

Cite this