TY - GEN
T1 - High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity
AU - Kopparty, Swastik
AU - Meir, Or
AU - Ron-Zewi, Noga
AU - Saraf, Shubhangi
N1 - Publisher Copyright:
© 2016 ACM.
PY - 2016/6/19
Y1 - 2016/6/19
N2 - In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1) and constant relative distance, whose query complexity is exp(Õ(√logn)) (for LCCs) and (log n)O(log log n) (forLTCs). Previously such codes were known to exist only with Ω(nβ) query complexity (for constant β > 0). In addition to having small query complexity, our codes also achieve better trade-offs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large-alphabet error-correcting code to further be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such trade-offs between the rate and the relative distance were previously not known for any o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters. Our codes are based on a technique of Alon, Edmonds and Luby. We observe that this technique can be used as a general distance-amplification method, and show that it interacts well with local correctors and testers. We obtain our main results by applying this method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant relative distance.
AB - In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1) and constant relative distance, whose query complexity is exp(Õ(√logn)) (for LCCs) and (log n)O(log log n) (forLTCs). Previously such codes were known to exist only with Ω(nβ) query complexity (for constant β > 0). In addition to having small query complexity, our codes also achieve better trade-offs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large-alphabet error-correcting code to further be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such trade-offs between the rate and the relative distance were previously not known for any o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters. Our codes are based on a technique of Alon, Edmonds and Luby. We observe that this technique can be used as a general distance-amplification method, and show that it interacts well with local correctors and testers. We obtain our main results by applying this method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant relative distance.
KW - Locally correctable codes
KW - Locally decodable codes
KW - Locally testable codes
KW - Query complexity
KW - Singleton bound
KW - Zyablov bound
UR - http://www.scopus.com/inward/record.url?scp=84979210402&partnerID=8YFLogxK
U2 - 10.1145/2897518.2897523
DO - 10.1145/2897518.2897523
M3 - Conference contribution
AN - SCOPUS:84979210402
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 202
EP - 215
BT - STOC 2016 - Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Mansour, Yishay
A2 - Wichs, Daniel
PB - Association for Computing Machinery
T2 - 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016
Y2 - 19 June 2016 through 21 June 2016
ER -