High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation

Ben Leyland, Aliza Zarka, Shoshana Didi-Cohen, Sammy Boussiba, Inna Khozin-Goldberg

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Lipid droplets (LDs) are an organelle conserved amongst all eukaryotes, consisting of a neutral lipid core surrounded by a polar lipid monolayer. Many species of microalgae accumulate LDs in response to stress conditions, such as nitrogen starvation. Here, we report the isolation and proteomic profiling of LD proteins from the model oleaginous pennate diatom Phaeodactylum tricornutum, strain Pt4 (UTEX 646). We also provide a quantitative description of LD morphological ontogeny, and fatty acid content. Novel cell disruption and LD isolation methods, combined with suspension-trapping and nanoflow liquid chromatography coupled to high resolution mass spectrometry, yielded an unprecedented number of LD proteins. Predictive annotation of the LD proteome suggests a broad assemblage of proteins with diverse functions, including lipid metabolism and vesicle trafficking, as well as ribosomal and proteasomal machinery. These proteins provide mechanistic insights into LD processes, and evidence for interactions between LDs and other organelles. We identify for the first time several key steps in diatom LD-associated triacylglycerol biosynthesis. Bioinformatic analyses of the LD proteome suggests multiple protein targeting mechanisms, including amphipathic helices, post-translational modifications, and translocation machinery. This work corroborates recent findings from other strains of P. tricornutum, other diatoms, and other eukaryotic organisms, suggesting that the fundamental proteins orchestrating LDs are conserved, and represent an ancient component of the eukaryotic endomembrane system. We postulate a comprehensive model of nitrogen starvation-induced diatom LDs on a molecular scale, and provide a wealth of candidates for metabolic engineering, with the potential to eventually customize LD contents.

Original languageEnglish
Pages (from-to)1642-1663
Number of pages22
JournalJournal of Phycology
Volume56
Issue number6
DOIs
StatePublished - 1 Dec 2020

Keywords

  • Phaeodactylum tricornutum
  • diatom
  • lipid droplet
  • nitrogen starvation
  • proteome
  • triacylglycerol

ASJC Scopus subject areas

  • Aquatic Science
  • Plant Science

Fingerprint

Dive into the research topics of 'High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation'. Together they form a unique fingerprint.

Cite this