Highly non-resonant lasing without inversion gain in a ladder scheme

D. Braunstein, G. A. Koganov, E. Smolik, Y. Biton, R. Shuker

Research output: Contribution to journalArticlepeer-review

Abstract

We show that it is possible to get gain without inversion at high frequency in a three-level ladder type scheme driven by a single driving laser. The transition from the ground state to first excited state is driven by a low-frequency resonant laser field. The next excited state lies far above the first one; therefore its resonant frequency can be much higher than that of the lower transition, and hence one should go beyond the most commonly used rotating wave approximation consisting of retaining only resonant terms (slowly oscillating) in the Hamiltonian. We solve the master equation, both analytically (under proper approximations) and numerically, with the full Hamiltonian keeping counter-rotating highly non-resonant terms. We show a dressed state picture explaining spectral features of gain-absorption profiles. Also we present a kind of phase diagram in the plane γ–Λ, where γ and Λ are spontaneous emission rate and incoherent pumping rate, respectively. The whole γ–Λ plane is divided into four areas: gain-inversion, absorption-no inversion, gain without inversion and absorption with inversion. The first two are usual regimes of incoherently pumped lasers, while the last two stem from the quantum interference phenomena. We analyse the parameter areas where such quantum regimes are possible. The exact numerical solution of the time-dependent master equation shows that keeping counter-rotating terms (no rotating wave approximation) gives rise to new spectral features in the form of additional peaks at combination frequencies. Actually the considered system works as a coherent frequency up-converter.

Original languageEnglish
Article number215403
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Volume53
Issue number21
DOIs
StatePublished - 14 Nov 2020

Keywords

  • Frequency up-conversion
  • Gain domains
  • Ladder scheme
  • Lasing without inversion
  • Non-rotating wave approximation
  • Refractive index modification

Fingerprint

Dive into the research topics of 'Highly non-resonant lasing without inversion gain in a ladder scheme'. Together they form a unique fingerprint.

Cite this