Hitting topological minors is FPT

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Scopus citations

Abstract

In the Topological Minor Deletion (TM-Deletion) problem, the input consists of an undirected graph G, a family of undirected graphs F and an integer k. The task is to determine whether G contains a set of vertices S of size at most k, such that the graph Gg- S obtained from G by removing the vertices of S, contains no graph from F as a topological minor. We give an algorithm forTM-Deletion with running time f(hg,k)· |V(G)|4. Here hg is the maximum size of a graph in F and f is a computable function of hg and k. This is the first fixed parameter tractable algorithm (FPT) for the problem. In fact, even for the restricted case of planar inputs the first FPT algorithm was found only recently by Golovach et al. [SODA 2020]. For this case we improve upon the algorithm of Golovach et al. [SODA 2020] by designing an FPT algorithm with explicit dependence on k and hg.

Original languageEnglish
Title of host publicationSTOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
EditorsKonstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, Julia Chuzhoy
PublisherAssociation for Computing Machinery
Pages1317-1326
Number of pages10
ISBN (Electronic)9781450369794
DOIs
StatePublished - 8 Jun 2020
Event52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020 - Chicago, United States
Duration: 22 Jun 202026 Jun 2020

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020
Country/TerritoryUnited States
CityChicago
Period22/06/2026/06/20

Keywords

  • Parameterized Complexity
  • Topological Minor Containment
  • Topological Minor Deletion

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Hitting topological minors is FPT'. Together they form a unique fingerprint.

Cite this