TY - GEN
T1 - How many diagnoses do we need?
AU - Stern, Roni
AU - Kalech, Meir
AU - Rogov, Shelly
AU - Feldman, Alexander
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - A known limitation of many diagnosis algorithms is that the number of diagnoses they return can be very large. This raises the question of how to use such a large set of diagnoses. For example, presenting hundreds of diagnoses to a human operator (charged with repairing the system) is meaningless. In various settings, including decision support for a human operator and automated troubleshooting processes, it is sufficient to be able to answer a basic diagnostic question: is a given component faulty? We propose a way to aggregate an arbitrarily large set of diagnoses to return an estimate of the likelihood of a given component to be faulty. The resulting mapping of components to their likelihood of being faulty is called the system's health state. We propose two metrics for evaluating the accuracy of a health state and show that an accurate health state can be found without finding all diagnoses. An empirical study explores the question of how many diagnoses are needed to obtain an accurate enough health state, and a simple online stopping criterion is proposed.
AB - A known limitation of many diagnosis algorithms is that the number of diagnoses they return can be very large. This raises the question of how to use such a large set of diagnoses. For example, presenting hundreds of diagnoses to a human operator (charged with repairing the system) is meaningless. In various settings, including decision support for a human operator and automated troubleshooting processes, it is sufficient to be able to answer a basic diagnostic question: is a given component faulty? We propose a way to aggregate an arbitrarily large set of diagnoses to return an estimate of the likelihood of a given component to be faulty. The resulting mapping of components to their likelihood of being faulty is called the system's health state. We propose two metrics for evaluating the accuracy of a health state and show that an accurate health state can be found without finding all diagnoses. An empirical study explores the question of how many diagnoses are needed to obtain an accurate enough health state, and a simple online stopping criterion is proposed.
UR - http://www.scopus.com/inward/record.url?scp=84959915416&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84959915416
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1618
EP - 1624
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -