TY - GEN
T1 - How to explore a fast-changing world (cover time of a simple random walk on evolving graphs)
AU - Avin, Chen
AU - Koucký, Michal
AU - Lotker, Zvi
PY - 2008/8/14
Y1 - 2008/8/14
N2 - Motivated by real world networks and use of algorithms based on random walks on these networks we study the simple random walks on dynamic undirected graphs with fixed underlying vertex set, i.e., graphs which are modified by inserting or deleting edges at every step of the walk. We are interested in the expected time needed to visit all the vertices of such a dynamic graph, the cover time, under the assumption that the graph is being modified by an oblivious adversary. It is well known that on connected static undirected graphs the cover time is polynomial in the size of the graph. On the contrary and somewhat counter-intuitively, we show that there are adversary strategies which force the expected cover time of a simple random walk on connected dynamic graphs to be exponential. We relate this result to the cover time of static directed graphs. In addition we provide a simple strategy, the lazy random walk, that guarantees polynomial cover time regardless of the changes made by the adversary.
AB - Motivated by real world networks and use of algorithms based on random walks on these networks we study the simple random walks on dynamic undirected graphs with fixed underlying vertex set, i.e., graphs which are modified by inserting or deleting edges at every step of the walk. We are interested in the expected time needed to visit all the vertices of such a dynamic graph, the cover time, under the assumption that the graph is being modified by an oblivious adversary. It is well known that on connected static undirected graphs the cover time is polynomial in the size of the graph. On the contrary and somewhat counter-intuitively, we show that there are adversary strategies which force the expected cover time of a simple random walk on connected dynamic graphs to be exponential. We relate this result to the cover time of static directed graphs. In addition we provide a simple strategy, the lazy random walk, that guarantees polynomial cover time regardless of the changes made by the adversary.
UR - http://www.scopus.com/inward/record.url?scp=49049119314&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-70575-8_11
DO - 10.1007/978-3-540-70575-8_11
M3 - Conference contribution
AN - SCOPUS:49049119314
SN - 3540705740
SN - 9783540705741
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 121
EP - 132
BT - Automata, Languages and Programming - 35th International Colloquium, ICALP 2008, Proceedings
T2 - 35th International Colloquium on Automata, Languages and Programming, ICALP 2008
Y2 - 7 July 2008 through 11 July 2008
ER -