Abstract
In this paper we develop a H∞-type theory, from the dissipation point of view, for a large class of time-continuous stochastic nonlinear systems. In particular, we introduce the notion of stochastic dissipative systems analogously to the familiar notion of dissipation associated with deterministic systems and utilize it as a basis for the development of our theory. Having discussed certain properties of stochastic dissipative systems, we consider time-varying nonlinear systems for which we establish a connection between what is called the L2-gain property and the solution to a certain Hamilton-Jacobi inequality (HJI), that may be viewed as a bounded real lemma for stochastic nonlinear systems. The time-invariant case with infinite horizon is also considered, where for this case we synthesize a worst case-based stabilizing controller. Stability in this case is taken to be in the mean-square sense. In the stationary case, the problem of robust state feedback control is considered in the case of norm-bounded uncertainties. A solution is then derived in terms of linear matrix inequalities.
Original language | English |
---|---|
Pages (from-to) | 247-257 |
Number of pages | 11 |
Journal | Systems and Control Letters |
Volume | 55 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2006 |
Keywords
- Disturbance attenuation
- H-infinity
- Linear matrix inequalities
- Nonlinear systems
- Stochastic systems
ASJC Scopus subject areas
- Control and Systems Engineering
- General Computer Science
- Mechanical Engineering
- Electrical and Electronic Engineering