H2 Spaces of Non-commutative Functions

Mihai Popa, Victor Vinnikov

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We define the Hardy spaces of free noncommutative functions on the noncommutative polydisc and the noncommutative ball and study their basic properties. Our technique combines the general methods of noncommutative function theory and asymptotic formulae for integration over the unitary group. The results are the first step in developing the general theory of free noncommutative bounded symmetric domains on the one hand and in studying the asymptotic free noncommutative analogues of classical spaces of analytic functions on the other.

Original languageEnglish
Pages (from-to)945-967
Number of pages23
JournalComplex Analysis and Operator Theory
Volume12
Issue number4
DOIs
StatePublished - 1 Apr 2018

Keywords

  • Asymptotic free independence
  • Hardy H spaces
  • Non-commutative ball
  • Non-commutative functions
  • Non-commutative polydisc
  • Taylor–Taylor expansion for non-commutative functions

ASJC Scopus subject areas

  • Computational Mathematics
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'H2 Spaces of Non-commutative Functions'. Together they form a unique fingerprint.

Cite this