TY - GEN
T1 - Human arterial tree simulation on TeraGrid
AU - Grinberg, Leopold
AU - Dong, Suchuan
AU - Noble, James
AU - Yakhot, Alexander
AU - Karniadakis, George
AU - Karonis, Nicholas
PY - 2006/12/1
Y1 - 2006/12/1
N2 - The human arterial tree consists of a complex network of branching blood vessels leading from the heart to arterioles, capillaries, and venules - comprising the microcirculation. The numerical simulation of the blood flow in a single part of the human arterial tree requires hundreds of CPUs; a full human arterial tree will require thousands of CPUs. Nowadays, we can use geographically distributed supercomputers connected by a fast network to perform large-scale simulations.Nektar-G2 is the grid-enabled version of Nektar, software developed at Brown University, that allows to solve problems on geographically distributed supercomputers. The topology-aware feature of MPICH-G2 is utilized to enforce an efficient data distribution strategy. Multi-level message passing algorithms minimizes the inter-site communication. Our ultimate goal is to model blood flow interaction of different regions of the cardiovascular system and to establish a biomechanics gateway on the TeraGrid.During poster presentation we will present results of ongoing project.
AB - The human arterial tree consists of a complex network of branching blood vessels leading from the heart to arterioles, capillaries, and venules - comprising the microcirculation. The numerical simulation of the blood flow in a single part of the human arterial tree requires hundreds of CPUs; a full human arterial tree will require thousands of CPUs. Nowadays, we can use geographically distributed supercomputers connected by a fast network to perform large-scale simulations.Nektar-G2 is the grid-enabled version of Nektar, software developed at Brown University, that allows to solve problems on geographically distributed supercomputers. The topology-aware feature of MPICH-G2 is utilized to enforce an efficient data distribution strategy. Multi-level message passing algorithms minimizes the inter-site communication. Our ultimate goal is to model blood flow interaction of different regions of the cardiovascular system and to establish a biomechanics gateway on the TeraGrid.During poster presentation we will present results of ongoing project.
UR - http://www.scopus.com/inward/record.url?scp=34548289044&partnerID=8YFLogxK
U2 - 10.1145/1188455.1188613
DO - 10.1145/1188455.1188613
M3 - Conference contribution
AN - SCOPUS:34548289044
SN - 0769527000
SN - 9780769527000
T3 - Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06
BT - Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06
ER -