Hydrogen embrittlement in hydride- and non hydride-forming systems - Microstructural/phase changes and cracking mechanisms

D. Eliezer, E. Tal-Gutelmacher, Th Boellinghaus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Hydrogen-assisted cracking (HAC) or hydrogen embrittlement (HE) are the most commonly used terms to describe a time-dependant failure process, characterized by mechanical properties degradation, mainly ductility reduction, and a change in the fracture mode. With almost no direct techniques for observing atomic-scale events at crack tips in bulk specimens, HE/HAC mechanisms are deduced mainly from fractography, microscopic investigation of microstructure changes, surface-science observations, and atomistic or continuum modeling. This paper addresses to HE/HAC mechanisms into two different systems; hydride-forming and non-hydride forming materials. As a representative example of the hydride-forming systems, the discussion focuses on the hydrogen-induced second phase formation (e.g. hydrides) phenomena in titanium based alloys. Due to the large differences in the behavior of hydrogen in α and β phases of titanium, the susceptibility of titanium-based alloys to the various forms and conditions of hydrogen embrittlement can vary markedly. The microstructural changes and hydrogen-induced second phase formation due to exposure at various charging conditions, as well as the difference in hydrogen absorption/desorption behavior as a function of the prior microstructure of titanium alloys, are highlighted. In non-hydride forming materials, where as representative examples stainless steels are chosen, the paper concentrates on the qualitatively same phenomena of hydrogen-induced second phase embrittlement,. The phase transitions related to hydrogen-induced cracking, the hydrogen related failure sequences and fracture modes in austenitic and supermartensitic stainless steels and a potential modeling of hydrogen-assisted cracking in these structural metallic materials are discussed.

Original languageEnglish
Title of host publication11th International Conference on Fracture 2005, ICF11
Pages3299-3304
Number of pages6
StatePublished - 1 Dec 2005
Event11th International Conference on Fracture 2005, ICF11 - Turin, Italy
Duration: 20 Mar 200525 Mar 2005

Publication series

Name11th International Conference on Fracture 2005, ICF11
Volume5

Conference

Conference11th International Conference on Fracture 2005, ICF11
Country/TerritoryItaly
CityTurin
Period20/03/0525/03/05

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology

Fingerprint

Dive into the research topics of 'Hydrogen embrittlement in hydride- and non hydride-forming systems - Microstructural/phase changes and cracking mechanisms'. Together they form a unique fingerprint.

Cite this