TY - GEN
T1 - “I Don't Think So”
T2 - 36th AAAI Conference on Artificial Intelligence, AAAI 2022
AU - Amitai, Yotam
AU - Amir, Ofra
N1 - Publisher Copyright:
© 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2022/6/30
Y1 - 2022/6/30
N2 - With Artificial Intelligence on the rise, human interaction with autonomous agents becomes more frequent. Effective human-agent collaboration requires users to understand the agent's behavior, as failing to do so may cause reduced productivity, misuse or frustration. Agent strategy summarization methods are used to describe the strategy of an agent to users through demonstrations. A summary's objective is to maximize the user's understanding of the agent's aptitude by showcasing its behaviour in a selected set of world states. While shown to be useful, we show that current methods are limited when tasked with comparing between agents, as each summary is independently generated for a specific agent. In this paper, we propose a novel method for generating dependent and contrastive summaries that emphasize the differences between agent policies by identifying states in which the agents disagree on the best course of action. We conducted user studies to assess the usefulness of disagreement-based summaries for identifying superior agents and conveying agent differences. Results show disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS, a strategy summarization algorithm which generates summaries for each agent independently.
AB - With Artificial Intelligence on the rise, human interaction with autonomous agents becomes more frequent. Effective human-agent collaboration requires users to understand the agent's behavior, as failing to do so may cause reduced productivity, misuse or frustration. Agent strategy summarization methods are used to describe the strategy of an agent to users through demonstrations. A summary's objective is to maximize the user's understanding of the agent's aptitude by showcasing its behaviour in a selected set of world states. While shown to be useful, we show that current methods are limited when tasked with comparing between agents, as each summary is independently generated for a specific agent. In this paper, we propose a novel method for generating dependent and contrastive summaries that emphasize the differences between agent policies by identifying states in which the agents disagree on the best course of action. We conducted user studies to assess the usefulness of disagreement-based summaries for identifying superior agents and conveying agent differences. Results show disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS, a strategy summarization algorithm which generates summaries for each agent independently.
UR - http://www.scopus.com/inward/record.url?scp=85142880531&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85142880531
T3 - Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
SP - 5269
EP - 5276
BT - AAAI-22 Technical Tracks 5
PB - Association for the Advancement of Artificial Intelligence
Y2 - 22 February 2022 through 1 March 2022
ER -