TY - JOUR
T1 - Identification of novel pro-migratory, cancer-associated genes using quantitative, microscopy-based screening
AU - Naffar-Abu-Amara, Suha
AU - Shay, Tal
AU - Galun, Melrav
AU - Cohen, Naomi
AU - Isakoff, Steven J.
AU - Geiger, Benjamin
N1 - Funding Information:
SNA is a recipient of a special fellowship from the Planning and Budgeting Committee of the Israel Ministry of Education. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Biology. ZK holds the Israel Pollak Professorial Chair in Biophysics. We thank the Harvard Institute of Proteomics and Joshua LaBaer, Joseph Pearlberg and Joan Brugge, for making the BC1000 gene collection available to us.
PY - 2008/1/23
Y1 - 2008/1/23
N2 - Background. Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli. To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable the monitoring of diverse migratory parameters in a large number of samples are necessary. Methodology. In the present study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic tracks (PKT) procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety of morphological and kinetic features. Conclusions. In this screen we identified 4 novel genes derived from breast carcinoma related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as tumor metastasis and invasion.
AB - Background. Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli. To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable the monitoring of diverse migratory parameters in a large number of samples are necessary. Methodology. In the present study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic tracks (PKT) procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety of morphological and kinetic features. Conclusions. In this screen we identified 4 novel genes derived from breast carcinoma related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as tumor metastasis and invasion.
UR - http://www.scopus.com/inward/record.url?scp=44849084072&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0001457
DO - 10.1371/journal.pone.0001457
M3 - Article
C2 - 18213366
AN - SCOPUS:44849084072
SN - 1932-6203
VL - 3
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e1457
ER -