TY - JOUR
T1 - Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms
AU - Selvaraj, Gurudeeban
AU - Kaliamurthi, Satyavani
AU - Kaushik, Aman Chandra
AU - Khan, Abbas
AU - Wei, Yong Kai
AU - Cho, William C.
AU - Gu, Keren
AU - Wei, Dong Qing
N1 - Publisher Copyright:
© 2018
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Background: Lung adenocarcinoma (LUAD) is a heterogeneous disease with poor survival in the advanced stage and a high incidence rate in the world. Novel drug targets are urgently required to improve patient treatment. Therefore, we aimed to identify therapeutic targets for LUAD based on protein-protein and protein-drug interaction network analysis with neural network algorithms using mRNA expression profiles. Results: A comprehensive meta-analysis of selective non-small cell lung cancer (NSCLC) mRNA expression profile datasets from Gene Expression Omnibus were used to identify potential biomarkers and the molecular mechanisms related to the prognosis of NSCLC patients. Using the Network Analyst tool, based on combined effect size (ES) methods, we recognized 6566 differentially expressed genes (DEGs), which included 3036 downregulated and 3530 upregulated genes linked to NSCLC patient survival. ClueGO, a Cytoscape plugin, was exploited to complete the function and pathway enrichment analysis, which disclosed “regulated exocytosis”, “purine nucleotide binding”, “pathways in cancer”, and “cell cycle” between exceptionally supplemented terms. Enrichr, a web tool examination, demonstrated “early growth response protein 1 (EGR-1)”, “hepatocyte nuclear factor 4α (HNF4A)”, “mitogen-activated protein kinase 14 (MAP3K14)”, and “cyclin-dependent kinase 1 (CDK1)” to be among the most prevalent TFs and kinases associated with NSCLC. Our meta-analysis identified that MAPK1 and aurora kinase (AURKA) are the most obvious class of hub nodes. Furthermore, protein-drug interaction network and neural network algorithms identified candidate drugs such as phosphothreonine and 4-(4-methylpiperazin-1-yl)-n-[5-(2-thienylacetyl)-1,5-dihydropyrrolo[3,4-c]pyrazol-3-yl] benzamide and for the targets MAPK1 and AURKA, respectively. Conclusion: Our study has identified novel candidate biomarkers, pathways, transcription factors (TFs), and kinases associated with NSCLC prognosis, as well as drug candidates, which may assist treatment strategy for NSCLC patients.
AB - Background: Lung adenocarcinoma (LUAD) is a heterogeneous disease with poor survival in the advanced stage and a high incidence rate in the world. Novel drug targets are urgently required to improve patient treatment. Therefore, we aimed to identify therapeutic targets for LUAD based on protein-protein and protein-drug interaction network analysis with neural network algorithms using mRNA expression profiles. Results: A comprehensive meta-analysis of selective non-small cell lung cancer (NSCLC) mRNA expression profile datasets from Gene Expression Omnibus were used to identify potential biomarkers and the molecular mechanisms related to the prognosis of NSCLC patients. Using the Network Analyst tool, based on combined effect size (ES) methods, we recognized 6566 differentially expressed genes (DEGs), which included 3036 downregulated and 3530 upregulated genes linked to NSCLC patient survival. ClueGO, a Cytoscape plugin, was exploited to complete the function and pathway enrichment analysis, which disclosed “regulated exocytosis”, “purine nucleotide binding”, “pathways in cancer”, and “cell cycle” between exceptionally supplemented terms. Enrichr, a web tool examination, demonstrated “early growth response protein 1 (EGR-1)”, “hepatocyte nuclear factor 4α (HNF4A)”, “mitogen-activated protein kinase 14 (MAP3K14)”, and “cyclin-dependent kinase 1 (CDK1)” to be among the most prevalent TFs and kinases associated with NSCLC. Our meta-analysis identified that MAPK1 and aurora kinase (AURKA) are the most obvious class of hub nodes. Furthermore, protein-drug interaction network and neural network algorithms identified candidate drugs such as phosphothreonine and 4-(4-methylpiperazin-1-yl)-n-[5-(2-thienylacetyl)-1,5-dihydropyrrolo[3,4-c]pyrazol-3-yl] benzamide and for the targets MAPK1 and AURKA, respectively. Conclusion: Our study has identified novel candidate biomarkers, pathways, transcription factors (TFs), and kinases associated with NSCLC prognosis, as well as drug candidates, which may assist treatment strategy for NSCLC patients.
KW - Hub nodes
KW - Lung adenocarcinoma
KW - Microarray data
KW - Network analyst
KW - Neural network
KW - STRING
KW - Walktrap module
UR - http://www.scopus.com/inward/record.url?scp=85053082138&partnerID=8YFLogxK
U2 - 10.1016/j.jbi.2018.09.004
DO - 10.1016/j.jbi.2018.09.004
M3 - Article
C2 - 30195659
AN - SCOPUS:85053082138
SN - 1532-0464
VL - 86
SP - 120
EP - 134
JO - Journal of Biomedical Informatics
JF - Journal of Biomedical Informatics
ER -