TY - GEN
T1 - Identifying modes of user engagement with online news and their relationship to information gain in text
AU - Grinberg, Nir
N1 - Publisher Copyright:
© 2018 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC BY 4.0 License.
PY - 2018/4/10
Y1 - 2018/4/10
N2 - Prior work established the benefits of server-recorded user engagement measures (e.g. clickthrough rates) for improving the results of search engines and recommendation systems. Client-side measures of post-click behavior received relatively little attention despite the fact that publishers have now the ability to measure how millions of people interact with their content at a fine resolution using client-side logging. In this study, we examine patterns of user engagement in a large, client-side log dataset of over 7.7 million page views (including both mobile and non-mobile devices) of 66,821 news articles from seven popular news publishers. For each page view we use three summary statistics: dwell time, the furthest position the user reached on the page, and the amount of interaction with the page through any form of input (touch, mouse move, etc.). We show that simple transformations on these summary statistics reveal six prototypical modes of reading that range from scanning to extensive reading and persist across sites. Furthermore, we develop a novel measure of information gain in text to capture the development of ideas within the body of articles and investigate how information gain relates to the engagement with articles. Finally, we show that our new measure of information gain is particularly useful for predicting reading of news articles before publication, and that the measure captures unique information not available otherwise.
AB - Prior work established the benefits of server-recorded user engagement measures (e.g. clickthrough rates) for improving the results of search engines and recommendation systems. Client-side measures of post-click behavior received relatively little attention despite the fact that publishers have now the ability to measure how millions of people interact with their content at a fine resolution using client-side logging. In this study, we examine patterns of user engagement in a large, client-side log dataset of over 7.7 million page views (including both mobile and non-mobile devices) of 66,821 news articles from seven popular news publishers. For each page view we use three summary statistics: dwell time, the furthest position the user reached on the page, and the amount of interaction with the page through any form of input (touch, mouse move, etc.). We show that simple transformations on these summary statistics reveal six prototypical modes of reading that range from scanning to extensive reading and persist across sites. Furthermore, we develop a novel measure of information gain in text to capture the development of ideas within the body of articles and investigate how information gain relates to the engagement with articles. Finally, we show that our new measure of information gain is particularly useful for predicting reading of news articles before publication, and that the measure captures unique information not available otherwise.
KW - Information gain
KW - Online news
KW - Post-click engagement
KW - Reading
KW - User engagement
UR - http://www.scopus.com/inward/record.url?scp=85068127256&partnerID=8YFLogxK
U2 - 10.1145/3178876.3186180
DO - 10.1145/3178876.3186180
M3 - Conference contribution
AN - SCOPUS:85068127256
T3 - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
SP - 1745
EP - 1754
BT - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
PB - Association for Computing Machinery, Inc
T2 - 27th International World Wide Web, WWW 2018
Y2 - 23 April 2018 through 27 April 2018
ER -