Abstract
Density functional theory calculations are combined with time-resolved photoluminescence experiments to identify the species responsible for the reversible trapping of holes following photoexcitation of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) having excess indium in the shell [P. Cavanaugh et al., J. Chem. Phys. 155, 244705 (2021)]. Several possible assignments are considered, and a substitutional indium adjacent to a zinc vacancy, In3+/VZn2-, is found to be the most likely. This assignment is consistent with the observation that trapping occurs only when the QD has excess indium and is supported by experiments showing that the addition of zinc oleate or acetate decreases the extent of trapping, presumably by filling some of the vacancy traps. We also show that the addition of alkyl carboxylic acids causes increased trapping, presumably by the creation of additional zinc vacancies. The calculations show that either a single In2+ ion or an In2+-In3+ dimer is much too easily oxidized to form the reversible traps observed experimentally, while In3+ is far too difficult to oxidize. Additional experimental data on InP/ZnSe/ZnS QDs synthesized in the absence of chloride demonstrates that the reversible traps are not associated with Cl-. However, a zinc vacancy adjacent to a substitutional indium is calculated to have its highest occupied orbitals about 1 eV above the top of the valence band of bulk ZnSe, in the appropriate energy range to act as reversible traps for quantum confined holes in the InP valence band. The associated orbitals are predominantly composed of p orbitals on the Se atoms adjacent to the Zn vacancy.
Original language | English |
---|---|
Article number | 174701 |
Journal | Journal of Chemical Physics |
Volume | 157 |
Issue number | 17 |
DOIs | |
State | Published - 7 Nov 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry