Abstract
Potable water reuse has been adopted by cities suffering water scarcity in recent years. The microbial safety in water reuse, especially with respect to pathogenic viruses, is still a concern for water consumers. Membrane filtration can achieve sufficient removal of pathogenic viruses without disinfection byproducts, but the required energy is intensive. In this study, we graft-polymerized zwitterionic SPP ([3-(methacryloylamino) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide) on a 150 kDa ultrafiltration polyethersulfone membrane to achieve a significantly higher virus removal. The redox-initiated graft-polymerization was performed in an aqueous solution during filtration of the monomer and initiators, allowing for functionalizing the membrane pores with hydrophilic polySPP. Bacteriophage MS2 and human adenovirus type 2 (HAdV-2) were used as surrogates for pathogenic human norovirus and human adenovirus. The grafting resulted in ∼18% loss of the membrane permeability but an increase of 4 log10 in HAdV-2 removal and 3 log10 in MS2 removal. The pristine and the grafted membranes were both conditioned with soluble microbial products (SMP) extracted from a full-scale membrane bioreactor (MBR) in order to test the virus removal after fouling the membranes. After fouling, the HAdV-2 removal by the grafted membrane was 1 log10 higher than that of the pristine membrane. For MS2, the grafted membrane after fouling with SMP achieved an additional 5 log10 removal compared to the unmodified membrane. The simple graft-polymerization functionalization of commercialized membrane achieving enhanced virus removal efficiency highlights the promise of membrane filtration for pathogen control in potable water reuse.
Original language | English |
---|---|
Pages (from-to) | 86-94 |
Number of pages | 9 |
Journal | Water Research |
Volume | 116 |
DOIs | |
State | Published - 1 Jan 2017 |
Keywords
- Graft-polymerization
- Repulsion force
- Virus removal
- Zwitterionic
ASJC Scopus subject areas
- Environmental Engineering
- Civil and Structural Engineering
- Ecological Modeling
- Water Science and Technology
- Waste Management and Disposal
- Pollution