Improving Continuous-time Conflict Based Search*

Anton Andreychuk, Konstantin Yakovlev, Eli Boyarski, Roni Stern

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Multi-Agent Pathfinding (MAPF) is the problem of finding paths for n agents in a graph such that each agent reaches its goal vertex and the agents do not collide with each other while moving along these paths. While different problem statements of MAPF exist, we are focused on MAPFR (Walker, Sturtevant, and Felner 2018), in which actions’ durations can be non-uniform, agents have geometric shapes, and time is continuous. Continuous-time conflict-based search (CCBS) (Andreychuk et al. 2019) is a recently proposed algorithm for finding optimal solutions to MAPFR problems. In this work, we propose several improvements to CCBS based on known improvements to the Conflict-based search (CBS) algorithm (Sharon et al. 2015) for classical MAPF, namely Disjoint Splitting (DS), Prioritizing Conflicts (PC), and high-level heuristics. We evaluate the impact of these improvements experimentally on both roadmaps and grids. Our results show that CCBS with these improvements is able to solve significantly more problems.

Original languageEnglish
Title of host publication14th International Symposium on Combinatorial Search, SoCS 2021
EditorsHang Ma, Ivan Serina
PublisherAssociation for the Advancement of Artificial Intelligence
Pages145-146
Number of pages2
ISBN (Electronic)9781713834557
StatePublished - 1 Jan 2021
Event14th International Symposium on Combinatorial Search, SoCS 2021 - Guangzhou, Virtual, China
Duration: 26 Jul 202130 Jul 2021

Publication series

Name14th International Symposium on Combinatorial Search, SoCS 2021

Conference

Conference14th International Symposium on Combinatorial Search, SoCS 2021
Country/TerritoryChina
CityGuangzhou, Virtual
Period26/07/2130/07/21

ASJC Scopus subject areas

  • Computer Networks and Communications

Cite this