TY - GEN
T1 - Improving Continuous-time Conflict Based Search*
AU - Andreychuk, Anton
AU - Yakovlev, Konstantin
AU - Boyarski, Eli
AU - Stern, Roni
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Multi-Agent Pathfinding (MAPF) is the problem of finding paths for n agents in a graph such that each agent reaches its goal vertex and the agents do not collide with each other while moving along these paths. While different problem statements of MAPF exist, we are focused on MAPFR (Walker, Sturtevant, and Felner 2018), in which actions’ durations can be non-uniform, agents have geometric shapes, and time is continuous. Continuous-time conflict-based search (CCBS) (Andreychuk et al. 2019) is a recently proposed algorithm for finding optimal solutions to MAPFR problems. In this work, we propose several improvements to CCBS based on known improvements to the Conflict-based search (CBS) algorithm (Sharon et al. 2015) for classical MAPF, namely Disjoint Splitting (DS), Prioritizing Conflicts (PC), and high-level heuristics. We evaluate the impact of these improvements experimentally on both roadmaps and grids. Our results show that CCBS with these improvements is able to solve significantly more problems.
AB - Multi-Agent Pathfinding (MAPF) is the problem of finding paths for n agents in a graph such that each agent reaches its goal vertex and the agents do not collide with each other while moving along these paths. While different problem statements of MAPF exist, we are focused on MAPFR (Walker, Sturtevant, and Felner 2018), in which actions’ durations can be non-uniform, agents have geometric shapes, and time is continuous. Continuous-time conflict-based search (CCBS) (Andreychuk et al. 2019) is a recently proposed algorithm for finding optimal solutions to MAPFR problems. In this work, we propose several improvements to CCBS based on known improvements to the Conflict-based search (CBS) algorithm (Sharon et al. 2015) for classical MAPF, namely Disjoint Splitting (DS), Prioritizing Conflicts (PC), and high-level heuristics. We evaluate the impact of these improvements experimentally on both roadmaps and grids. Our results show that CCBS with these improvements is able to solve significantly more problems.
UR - http://www.scopus.com/inward/record.url?scp=85124620801&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85124620801
T3 - 14th International Symposium on Combinatorial Search, SoCS 2021
SP - 145
EP - 146
BT - 14th International Symposium on Combinatorial Search, SoCS 2021
A2 - Ma, Hang
A2 - Serina, Ivan
PB - Association for the Advancement of Artificial Intelligence
T2 - 14th International Symposium on Combinatorial Search, SoCS 2021
Y2 - 26 July 2021 through 30 July 2021
ER -